Co/lax functors without apriori comparison cells

A profunctor \ct F:\ct A\ag\ct B is functorial iff every object of \ct A has a reflection in \ct B within \ct F. Fixing (arbitrarily) one reflection arrow for each object \ct A yields a functor F:\ct A\to\ct B such that F_*\cong \ct F.
Dually, \ct F is co-functorial iff every object of \ct B has a coreflection in \ct A, yielding a functor G:\ct B\to\ct A such that G^*\cong\ct F.
If both are satisfied, then F above is left adjoint to G.

This analogy continues in dimension 2 (for bicategories or double categories), yielding the colax functors as double profunctors with the reflection property and the lax functors as double profunctors with the coreflection property. If a double profunctor has both property, it determines a colax/lax adjunction.

Continue reading “Co/lax functors without apriori comparison cells”